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ABSTRACT 

This final technical report describes numerical procedures formulated 
for the analysis of three-dimensional (3D) jet mixing problems, as 
incorporated in the computer model, SCIP3D. The overall methodology closely 
parallels that developed in the earlier 2D/axisymmetric jet mixing model, 
SCIPVIS. SCIP3D integrates the 3D parabolized Navier-Stokes (PNS) jet 
mixing equations, cast in mapped Cartesian or cylindrical coordinates, 
employing the explicit MacCormack Algorithm. A pressure-split variant of 
this algorithm is employed in subsonic regions with a sublayer approximation 
utilized for treating the streamwise pressure component. SCIP3D contains 
both the ke and kW turbulence models, and employs a two-component mixture 
approach to treat jet exhausts of arbitrary composition. Specialized grid 
procedures are used to adjust the grid growth in accordance with the growth 
of the jet, including a hybrid cartesian/cylindrical grid procedure for 
rectangular jets which moves the hybrid coordinate origin towards the flow 
origin as the jet transitions from a rectangular to circular shape. 
Numerous calculations are presented for rectangular mixing problems, as well 
as for a variety of basic unit problems exhibiting overall capabilities of 
SCIP3D. 
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1, IRTRODUCTIOR 

1.1 Program Overview 

This final technical report describes computational methodology 
developed to analyze 3D jet mixing problems using spatial matching 
parabolized Navier-Stokes (PNS) methodology. The program was initiated in 
1981 with preliminary work focused on developing methodology for analyzing 
2D supersonic free jet interaction problems. The SCIPVIS shock-capturing 
model, initially developed to analyze such supersonic problems, was then 
extended to analyze supersonic jets exhausting into subsonic external 
streams. The SCIPVIS methodology was documented in an interim technical 
report,% and a number of journal articles were published which describe its 
application to analyzing the detailed multiple-cell shock structure in 
turbulent jets (see refs. 2-5). 

The SCIPVIS model employed explicit numerics and thus could not readily 
analyze wall-bounded jet flows which resolve the details of the near-wall 
boundary layer. To address this problem area, the 2D SPLITP model was 
developed which employs implicit, pressure-split numerics. A number of 
earlier papers and journal articles describe various aspects of the numerics 
in SPLITP (see refs. 6-9). The extension of SCIPVIS and SPLITP based 
numerics to analyze 3D jet mixing problems is the subject of this final 
technical report. 

1.2 Utilization Of SCIPVIS and SPLITP Hodels In Other Programs 

The SCIPVIS and SPLITP 2D research models developed under this NASA 
program have been extended to analyze a broad spectrum. of problem areas 
under other government sponsored programs. Under Army (MICOM) and Air Force 
(AFWAL) support, SCIPVIS and SPLITP have been extended to analyze 
multi-component/multi-phase flows with nonequilibrium chemistry and 
gas/particle interactions. They serve as components of the latest JANNAF 
Standard Plume Flowfield Model (SPF/3) as schematized in Figure 1, and 
described in refs. 10 and 11, and in several papers presented at the JANNAF 
15th and 16th Plume Technology Meetings. Analogous pairing of SCIPVIS and 
SPLITP PNS numerics has been utilized to analyze hypersonic wake flowfields 

-1- 



i i  
A X  

FIGURE 1. Utilization Of SCIPVIS and SPLITP Models For Zonal PNS Analysis 
Of Rocket Plume Flowfields In JANNAF SPF/3 Standard Plume 
Flowfield Model. 
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as described in refs. 11-13. In both the plume and wake models above, 
SCIPVIS and SPLITP are also utilized to analyze the base region employing 
Chapman-Korst type assumptions to achieve closure (see refs. 10 and 14 for 
details). A wall jet version of SPLITP is a major component of the 
circulation-control airfoil codel5--1' developed jointly by SAIC and AMI 
under NASA/Ames support. 

The most recent extensions of SPLITP and SCIPVIS numerics were made 
under DARPA/Air Force Support to analyze scramjet propulsive flowfields in 
support of the National Aerospace Plane (NASP) program. The NASP version of 
SPLITP, entitled SCORCH, is utilized to analyze scramjet supersonic 
combustor flowfields with tangential or moderately inclined fuel injection 
(refs. 18 and 19). The NASP version of SCIPVIS, entitled SCHNOZ, is 
utilized to analyze scramjet nozzle flowfields including the plume-like 
interaction of the nozzle exhaust flow with the vehicle aerodynamic flow at 
supersonic flight conditions (refs. 20 and 21). These codes have enhanced 
numerical capabilities to deal with strongly combusting flows in comparison 
with the earlier plume/wake versions. SCORCH and SCHNOZ comprise components 
of a complete design-oriented scramjet propulsive flowfield mode122,23 which 
has seen widespread usage by the NASP community. Current efforts are 
focused on unifying SCORCH/SCHNOZ numerics for the multi-zone analysis of 
generalized 2D jet mixing problems with chemistry, utilizing SCORCH implicit 
numerics in near-wall regions, and SCHNOZ explicit numerics in central 
regions. 

1.3 3D Jet Mixing Code, SCIP3D 

The SCIP3D code represents ext nsio 
SCIPVIS and SPLITP models to analyze 3D 

s of the 2D methodology in the 
jet mixing problems. SCIP3D is 

based upon the numerics in the SCIPVIS code and employs the explicit 
MacCormack algorithm to spatially integrate the 3D PNS jet mixing equations 
in supersonic flow regions utilizing mapped rectangular or cylindrical 
coordinates. Both the kE and kW two-equation turbulence models are 
incorporated into SCIP3D. For subsonic jet mixing problems, a pressure- 
split approach is employed whereby the streamwise pressure gradient is 
imposed and the cross-flow velocity field is determined via a coupled 
noniterative approach which parallels that employed in SPLITP for highly 
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curved jets.8 For mixed problems (supersonic jet into subsonic stream), it 
has been found necessary to adapt the grid to the shape of jet sonic line to 
deal with supersonic/subsonic coupling methodology in an 'organized' manner. 
For rectangular jets with large aspect ratios, this has required the 
utilization of hybrid rectangular/cylindrical mapped grids with a moving 
cylindrical origin which ultimately coincides with the jet axis far 
downstream when the jet takes on a circular shape. Numerous test cases are 
described in this report which were performed to check-out the varied run 
options included in SCIP3D. Various aspects of SCIP3D methodology have been 
given in earlier papers and journal articles (see refs. 24-27). This report 
will attempt to synthesize the work already documented, expand upon it where 
necessary, and provide details of recent work not yet reported upon. 
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2. GOVERNING EQUATIONS 

$ ‘I 

2.1 The 3D PNS Equations 

The conservative form of the 3D PNS ‘straight-back’ jet mixing equa- 
tions in Cartesian (J=O) or cylindrical (J=1) coordinates is listed below: 

In eq. (11, x, corresponds to the axial (marching) direction, x2 is the 
cross-flow direction, and x, is the vertical or radial direction. The 
coordinate system nomenclature for the two systems is summarized in Figure 
2. The vector arrays comprising E, F, and fi are as follows: 

[ k 2 ]  

j j = -  1 

J r 
1 J3w r (l-a)aP/ax,+JpUW 

2JpVW pUW 1 v, = 

- 
G =  

- 
0 

The vector vF, represents the parabolized stress and transport terms. In 
the above equations, U, V, and W are the axial, crossflow and radial 
velocity components, p is the density, P is the pressure, H is the total 
enthalpy, and a is the species parameter to be desciibed below. The 
parameter, a, is a pressure-split parameter used to distinguish between 
supersonic (a=l) and subsonic (a=O) run modes. 

2.2 Thermodynamics 

The jet mixing problems considered assume that the jet and external 
streams are each of uniform composition. For nonreacting (chemically 
frozen) situations, the species parameter, a, describes the local mixture 
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~ 

CARTESIAN SYSTEM ( J = O )  

Cartesian 

4 r’W 

X Y z 

CYLINDRICAL SYSTEM (J=1) 

r ,W 

+ V i d  + W i r  

I 3 1 X 2 X 1 System X 

t Cy l ind r i ca l  I x I d  I I I 

I r  
I 

FIGURE 2. Coordinate System Nomenclature For Cartesian and Cy l ind r i ca l  
Systems. 
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‘ composition; viz., 
I 
I 

a - a  

a - a  
E 

J E  

i i 

i i 
3 =  (2 )  

where ai is the mass fraction of the ith species and J and E represent the 
constant values of a in the unmixed jet and external streams. The static 
enthalpy is given by: 

i 

where : 

Then the specific heat ratio, y(8,T) is given by: 

where the specific heat, C is given by: 
P’ 

and the molecular weight, W, is given by: 

2.3 Parabolized Stress and Transport T e r m  i 

I 
I 

Eliminating all terms containing streamwise derivatives and using the 
Boussinesq-type approximation, the parabolized stress terms in the Cartesian 

l and cylindrical systems are written as follows: I 
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Cartesian Coordinates (x, = x, x2 = y, x3 = z) 

a 4 av a av a 2 aw a aw 
a Y  3 a Y  ay 3 az az ay vv = - (- p -4 + z ( p  z) - - (- p -1 + - (p -4 

- a 4 aw a aw a 2 av a av vu - - (- p --I + -(p -) - - (- p -) + - (p -) az 3 az a Y  a Y  az 3 ay ay a z  

a - a n  a - a n  
VH = - (p -1 + - (p 4 ay ay az  az  

Cy l ind r i ca l  Coordinates (x, = x, x2 = &, x3 = r)  

1 

(rW) - 5 p 

(7b) 

(7d) 

(80) 

1 
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In the above stress/transport term expressions, p represents the 'effective 
viscosity' (= p1 + pt) and ; is the effective transport parameter for scalar 
diffusion (= pl/Pr + pt/Prt) based on the assumption that heat and mass I 

I 

I diffuse at the same rate (viz., Lewis number of unity assumed). 

2.4 Two-Equation Turbulence Hodels 

Both the kea* and kWas two-equation turbulence models are utilized in 

I SCIP3D. The standard coefficients and constants are employed as described 
, in the earlier SCIPVIS report,.l Using tensor notation (repeated subscripts 

indicating summation), the ke model solves the following equations for k and 
I 
, e :  I 

I where: 

au aui aui 

1 ptw 
P =  A+-)-=  - pt ( ax, ax 

j axd 
t (10) 

i I 

The dominant Cartesian parabolized terms in the vorticity, w, for flows 
where U >> V, W are given by: 

i 
I 
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The dominant cylindrical parabolized terms in the vorticity, (o, are given 
by : 

The turbulent viscosity, pt, is defined by: 

a 
pt = Cppk / e  

The kW model solves the following equations for k and W: 

a (pVjk) = - a ( -- Pt ak 
axj tYk a x J  ) + - pCDkW 1/2 

axJ 

(12) 

(13a) 

a (13b) 
CIWP - 

c2 ) + - -  
k 

2 

The dominant Cartesian parabolized terms in the vorticity expression, (Vu) , 
are enumerated below: 
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The dominant cylindrical parabolized terms in the vorticity expression, 
(Vu) , are given by: 2 

r2 r ar ar2 + ‘F s au) ZF a (F s au)l (Vu)2 = - + - (-) - 
O2 [ au a2u 

The turbulent viscosity, pt, is defined by: 

1/2 Pt = pk/W 

(15) 

(16) 

2.5 Happed Vectorized Equations 

The mean flow and turbulence model equations are solved in a mapped 
computational domain defined by the geometric transformation: 

1 e = x  

tl = X2/X2,U 

5 = (x3-x3,L (x3, u-3, L) 

(17) 

In this transformation, L and U designate bounding surfaces of the 
computation. In the present application of this mapping for rectangular 
problems, the bounding computational surfaces are assumed’ to have no cross 
curvature i.e. yu = yu(x), ZL,u - - ZL,u(x). With this assumption, the 

Cartesian equations can be cast in the following form: 
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where : 

b and the transformation parameters ay, a,, and b, are defined by: Y 

For free jet problems, yu and 5 
jet. This is accomplished using growth rule formulations of the form: 

must fully encompass the viscous 
# 

which parallel those utilized in SCIPVISl for 2D underexpanded jets, applied 
on the two symmetry planes (y=O and Z=O) as exhibited in Figure 3 .  In 
Figure 3,  J* corresponds to the viscous dividsng streamline position on the 
symmetry plane, y = 0 ,  ascertained by monitoring the b profile at each step 
( d  = d*, where d+ = .5 until the mixing reaches the axis); JMAX is the index 
of the upper boundary point; W/U is the streamline inclination at J*; and, 
af/az is the outer edge gradient of the parameter f (taken to be the maximum 
of the streamwise velocity and species parameter). This boundary growth 
formulation provides for - exact alignment of the viscous dividing streamline 
position with the mapped coordinate line, c = constant in the initial 
expansion region of the jet. Note that the viscous part of the growth 
relation (the af/az term) is not activated until the jet shear layer reaches 
the upper boundary, and, that boundary growth is enforced to always be 
positive. Application of this boundary growth formulation on both symmetry 
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I -I 5 = I  
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BOW (JMAX 
SHOCK 

Z,(X) 

t f  /VIS.  DIV. SL 
JMAX 
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I . I  
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- I  - 
= '  \ x,u 

MAPPED 
DOMA I N 

?)=I - 7  
( I M A X )  

FIGURE 3. Mapped Computational Domain for  Supersonic Rectangular Jet 
Exhausting Into Supersonic Stream. 
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planes to yield the variation of z,(x) and yu(x) yields a mapped grid 
network which initially captures the 3D jet induced bow shock, and encloses 
the viscous jet in a manner which automatically makes the transition from a 
rectangular to a square type of grid in accordance with the respective 
vertical and transverse gradients in the flow. 

For cylindrical problems, the cross-flow boundaries are always constant 

(i.e. x = d, = constant) while the radial boundaries can have both axial 
= r  = r (x,d). With these stipu- 3 , L , U  L,U L,U and cross-curvature (i .e. x 

lations, the cylindrical equations can be cast in the same form as eq. (20) 

where now: 

2,u 

- 
E = E  (20) 

- - 
G = rbrG-ar,$ F 

H = i7 + (a,,*)<F - C 

bd and br are defined by: r,d' arrxn and the transformation parameters a 

a - [(l-s)rL + Gru l/(ru-rL) 
X X 

br = l/(ru-rL) 

For rectangular jet problems with a large aspect ratio 0 2/11, a 
hybrid mapped rectangular/cylindrical grid (Figure 4) would be utilized. As 

the solution evolves and the jet becomes more circular, the cylindrical 
origin moves to the flow origin. The procedures entailed in this moving 
origin methodology will be described in a subsequent section of this report. 
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I 

FIGURE 4. Hybrid Rectangular/Circular Mapping In Cross-Flow Plane For 
Generalized Rectangular Jet Problems. 

-1 5- 



3.  BIRIERICAL PROCEDURES FOR BBALYZIAG SUPERSOAIC 
KIXII!JG PROBLDfS BBD N"KRICAL STUDIES 

3.1 Interior P o i n t  Algorithm 

I n  present  ve r s ions  of SCIP3D, t h e  g r id  po in t s  are equal ly  spaced i n  

both t h e  9 and d i r e c t i o n s .  A l l  convect ive terms are represented  using 

one-sided (two po in t )  d i f f e rence  expressions;  d i f f u s i v e  terms are 

represented  us ing  c e n t r a l  d i f f e rence  expressions.  The s o l u t i o n  a t  i n t e r i o r  
g r i d  p o i n t s  is obtained using a s p a t i a l  marching, r o t a t i n g  ve r s ion  of t h e  

MacCormack algorithm (see ref. 30).  For the g r i d  poin t ,  I, J (see Figure  

3) .  t h i s  two-step algori thm takes t h e  fol lowing form i n  advancing the  

s o l u t i o n  from f t o  f + A t  (- denotes p r e d i c t o r  l e v e l  values;  - denotes  

c o r r e c t o r  l e v e l  va lues  a t  5 + A t ;  and, E and e Z  are a l t e r n a t e d  between 0 

and 1 at  odd/even s t e p s  t o  provide a nonpre fe ren t i a l  ( r o t a t i n g )  t reatment  of  
wave/convective processes) .  

Y 

Predictor Step 

+ V F ( I , J ) A t  

Corrector Step 
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where, for f = U, VF takes the form: 

I 
I After both the predictor and corrector steps, the conservation array, 

B ( I ,  J), is decoded using standard supersonic flow decode procedures (see 
ref. 1). 

The algorithm utilized is fully explicit and the step-size is limited 
by both hyperbolic (CFL) and parabolic stability constraints. These are 
combined in a 'parallel-resistor' manner (viz., At = (l/ACHyp + l/ACpAR)-l) 
with the CFL constraint satisfied using nonlinear reference plane 
characteristic intersections. For the fully supersonic jet mixing problems 
under consideration, the hyperbolic CFL constraint effectively controls the 
allowable step-size, with the parabolic criterion having little impact on 
the allowable step-size. 

3.2 Grid Distribution and Step-Size Control 
I 
I Consider the rectangular jet mixing problem with mild (e.g., 2/11 
I aspect ratio depicted in Figure 5 .  A simplistic hybrid grid (drawn with 

extremely crude grid definition) could be utilized to initiate the 
I 

calculation. As the jet contour takes on an elliptical appearance, the 

until far downstream (when the cross-section is circular), the cylindrical 
origin coincides with the flow axis of symmetry. Examples illustrating this 
'moving origin' methodology will be exhibited. 

~ origin would be moved to the left (e.g., rectangular planes are eliminated) 

1 
! 

I 
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+ CARTESIAN COORDSt r ,  j-- CYL NDRICAL COORDS. - 

FIGURE 5. Initial Hybrid Grid For Analysis Of Rectangular Jet Mixing 
Problem. 
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The coupling of Cartesian and cylindrical grids is relatively 
straightforward, but issues must be addressed in treating grid points near 

the cylindrical grid origin. Presently, a 'brute-force' approach is 
employed which utilizes a number of overlap Cartesian planes (Figure 61, 

with properties interpolated from the cylindrical grid solution. Using 
these overlap planes, the rectangular portion of the flowfield is integrated 
first at the predictor level to establish boundary conditions for the 

cylindrical region, which is then integrated at the predictor level. The 
rectangular portion is then integrated for the corrector step, followed by 

the integration of the cylindrical region for the corrector step. Only one 
solution (rectangular or cylindrical) need be kept in core storage at a 
time. (Note that for very high aspect ratio problems, core storage can be 
minimized by utilizing several blocks of rectangular grids, each solved 
independently utilizing overlap planes for coupling). Note that at the 
hybrid origin, W (= 0) and V in the Cartesian system are single valued but 
in cylindrical coordinates, = 0 and 9 = V cosd. Specialized procedures 
must be employed to avoid step-size limitations associated with cross-flow 
differentiation in cylindrical coordinates in the vicinity of the origin due 
to the small physical spacing between grid points. Again, the present 

approach is 'brute-force' (e.g., only selective grid points are calculated 

in accordance with the ratio of rAd to ruAd). The hybrid grid has only 
recently been incorporated into the code and further exploratory work 
appears warranted. 

The 'shear layer' initialization for jet interaction problems utilized 
in SCIP3D is directly analogous to that employed in previous overlaid 
viscous/inviscid jet models.sl,*a The initialization entails: 

(a) determining initial mean flow shear layer profiles centered about 

the jet slipstream location a small distance downstream of the 
nozzle exit plane (see refs. 31 and 32 for details); and, 

(b) determining initial turbulence parameter (ke or kW) profiles based 
on an equilibrium turbulence hypothesis and the use of a mixing 
length turbulence model approximation. 
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I FIGURE 6. Cylindrical/Cartesian Grid Coupling Using Overlap Cartesian 
Planes. 
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3.3 Boundary Point Procedures 

The following boundary surface types are analyzed in the supersonic 
version of the SCIP3D model: 

(1) solid surfaces (PNS with slip [no BLI or Euler limit); 
(2) symmetry planes; and, 

(3) jet mixing layer outer edge. 

The treatment of symmetry planes, using appropriate odd/even reflection 
conditions, employs standard techniques. Solid surfaces are treated using a 
variant of the Abbett wave-correction procedure” which incorporates the 
surface entropy approach and corner point methodology of Dash and Del- 
Guidice’O. Jet computational boundaries are configured to fall outside the 

viscous jet boundary using the growth rate formulation of equation (19) as 
schematized in Figure 3. For nonuniform supersonic flow surrounding the 
jet, the external flow can be calculated concurrently using the present 
shock-capturing algorithm in the inviscid limit. This is accomplished by 
extending the numerical domain outward sufficiently to capture the bounding 
outer shock using an estimate of the shock growth with a safety factor. For 
uniform surrounding flow, the external flowfield can be approximated using a 
linearized pressure/flow-deflection relation, In applying this approach, 

the nearfield portion of the jet is solved with the grid encompassing the 

captured jet induced bow shock (Figure 3 )  as discussed previously. The jet 
boundary is calculated using the Abbett wave-correction procedure as will be 
summarized below. 

The approach taken for jets exhausting into uniform supersonic streams 
assumes that the jet has quarter-plane symmetry and hence, the free stream 
velocity, U, is aligned with the x coordinate direction. Consider the 
calculation for upper jet boundary points on the surface $(XI (Figure 7) .  

The boundary points, J = JMAX, are first calculated using the interior point 
predictor/corrector algorithm with backward/backward predictor/corrector 
convective differences in the z direction and standard alternating 
predictor/corrector differences in the y direction. This yields properties 

U*, V*, P*, M*, etc. which do not satisfy the external flow solution. The 
external flow pressure, PE, is given by the linearized relation: 
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FIGURE 7. Schematic Of Wave-Correction Procedure Used To Couple Jet and 
Linearized Supersonic Flow Solution At Jet Boundary. 
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where 8. is the flow angle based on the predictor/corrector solution, viz.: 

- 
(S = 1 if h* . rp > 0; S = -1 if Q* . rp < 0; rp is the position vector to 
the boundary point in the plane x = const; Q* is the velocity vector, Q* = 

U*i + V*iy + W*iz) and 8' is a correction to this angle (obtained via 
perturbing the velocity in 
pressure is given by an 
conditions. viz.: 

the rp direction only). The corrected boundary 
isentropic simple wave rotation from P*. e* 

Solving eqs. (22) and (24) simultaneously with Pc set equal to PE 
yields the corrected boundary pressure and flow angle. The total enthalpy 

remains invariant (5 = %*) and the density is expanded isentropically (pc 

= p*(Pc/P*) 'I2). Hence, the magnitude of the corrected velocity is given by C 

( for  a perfect gas): 

2 r  P, 1/2 

and the corrected velocity vector can be written: 



where (since 6' = q'i, ) : 
P 

Z yP P v' = q' ( - 1  ; w' = q' (7) 
P P r (27) 

I 

with the corrected pressure, Pc, obtained via the relation 

Substituting the expressions for v' and w' in eq. (27) into eq. (261, and 

setting the magnitude of I 6, I to the value given by eq. 25 yields a 
quadratic expression for the magnitude of 5'; the sign corresponds to that 

In applying the Abbett wave-correction procedure at solid surfaces, the 
same predictor/corrector sequence discussed above is utilized. Thus, for an 

upper wall point, zu = F(x,y) , the MacCormack algorithm would be employed 
with backward/backward differences in the z direction and alternating 
differences in the y. The resultant velocity vector will not satisfy the 
boundary condition 8. = 0 and must be rotated through the angle 8' given 
by a* . 2 = I Q* I sine' yielding 

The corrected density, pc, is obtained from the is-ntropic r-lation 

and the corrected velocity, Qc, is obtained from 
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Then, the corrected velocity components are given by: 
I 

A A A A  
= Q c t = U t + V t + W t  

QC c l  0 2  c 3  

I where 

t =  
A A  6 - (6, . n n 

(32) 

(33 1 

= F(x), yu = G(x)), the For corner points with no cross-curvature (i.e. 

concurrent satisfaction of . n = 0 on both surfaces is obtained by apply- 

ing eq. ( 2 9 )  additively for rotations through the angles Oi + e; where: 

zU 
A 

W f  tane; = Fx - - U* 

V f  tane; = Gx - - Uf 

3 .I Corner Problem T e s t  Case 

(34a) 

(34b) 

The wave/shock-capturing capabilities of SCIP3D were first checked out 
by the performance of fundamental 3D corner flow interaction problems. 
Calculations were performed for: 

(1) a double expansion corner; 
(2) an expansion/compression corner; and, 
(3) a double compression corner. 

I In these test calculations, waves generated by two perpendicular walls 
I Reference 34 provides details of these elementary 

1 cases. These calculations were performed starti'ng with uniform supersonic 

flow, discontinuously turning the lower and side walls at x = 0. A mapped 
rectangular domain was implemented for all the calculations employing 
quarter-plane symmetry. The calculations were terminated before the wave 

systems reached the symmetry planes. 

interact with each other. 
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Boundary condi t ions  a t  the walls were analyzed using a v a r i a n t  of  t he  

Abbett wave c o r r e c t i o n  technique modified t o  employ t h e  entropy v a r i a t i o n  

along the  g r i d  l i n e  one g r id  i n t e r v a l  away from the  wall (see refs. 30, 34, 

3 5 ) .  A s  discussed i n  Sec t ion  3.3:  (1) wall poin t  p rope r t i e s  are first 
c a l c u l a t e d  us ing  t h e  MacCormack algorithm wi th  d i f f e rences  evaluated ' i n t o  
t h e  flow' i n  both the  p red ic to r  and co r rec to r  s t e p s ;  and ( 2 )  t h e  pressure  
and flow angles are then 'corrected' v i a  a r o t a t i o n  i n  the plane conta in ing  

t h e  wall normal and predic ted  v e l o c i t y  vec tor  so as t o  s a t i s f y  the  boundary 

condi t ion  . '& = 0. A t  the  corner point ,  the  Abbett technique is formu- 

lated whereby t h e  p r o p e r t i e s  a t  t h e  corner are evaluated based on: (1) 

a p p l i c a t i o n  of t h e  MacCormack algori thm using both Y and Z de r iva t ives  ' i n t o  

t h e  f low'  on both p r e d i c t o r  and co r rec to r  s t eps ;  (2) a dual  c o r r e c t i o n  

procedure t o  s a t i s f y  v . = 0 on both i n t e r s e c t i n g  su r faces  y i e ld ing  t h e  

t o t a l  t u rn ing  angle, be,, i.e., 

where bel and de2 are the  turn ing  co r rec t ions  requi red  on t h e  two i n t e r -  
setting sur faces ;  and, ( 3 )  evalua t ion  of  t h e  pressure  v i a  t h e  r e l a t i o n  

~ 

where PM is the  va lue  predic ted  by the MacCormack algori thm and Pc is the  

corrected value.  Th i s  approach has been found t o  work extremely well. 
Resu l t s  fo r  the  double compression corner  test case are described below. 

I n  t h i s  Mach 3.17 case,  ba th  t h e  lower wall and s i d e  wall were turned 

up by 12.5O genera t ing  two i n t e r s e c t i n g  shock waves, as exhib i ted  i n  t h e  

i n s e r t  of F igure  8. The predicted pressure  contours  after 18 s t e p s  are 
shown i n  F igure  8 and e x h i b i t  t h e  c l a s s i c  behavior obtained i n  experiments 
and us ing  con ica l ly  i n v a r i a n t  marching procedures. The streamwise corner  
p re s su re  v a r i a t i o n  is shown i n  Figure 9 and 'settles down' after s e v e r a l  
s t e p s  t o  the  c o r r e c t  asymptotic value observed experimentally.  The i n i t i a l  

o s c i l l a t i o n s  occur due t o  captur ing  a s t rong  corner  shock (121/%O + 1 2 l / s 0  

of abrupt  compression) w i t h  - no i n i t i a l  g r i d  r e so lu t ion .  
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Pressure Contours For Double Compression Corner. 
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FIGURE 9. Streamwise Variation Of Corner Pressure For Double Compress- 
ion Case. 
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3 ,S Square Converging-Diverging Bozzle Problem 

The next sample calculation was performed for a square converging- 
diverging nozzle (Figure 10) which encompasses the double-expansion and 
double-compression wave interactions discussed in Section 3.4. Complete 
details of this flowfield are given in ref. 34 which describes results 
utilizing the earlier BIGMAC 3D nozzle model of Dash and DelGuidice. The 
initial Mach number for this case was 2.94 and the initial pressure was 0.4 

atm. The starting profile was uniform. Figure 11 exhibits predicted 
temperature contours on the symmetry planes (quarter plane symmetry was 
assumed) and pressure contours at the station x = 1 5  showing the occurrence 
of dual plane shock interactions. Figure 12 exhibits the predicted stream- 

wise variation of Mach number along the axis and comparisons with the 

results of Chang" (which terminated at the shock). Figure 13 exhibits the 
streamwise variation of pressure along the axis and comparisons with results 

of the GIM code''. Figure 14 exhibits the predicted streamwise pressure 
variation along a wall/axis juncture. The results compare favorable with 
those of the GIM code and with previous BIGMAC shock-capturing results" 
(not shown). The predicted streamwise pressure variation along the corner 
is shown in Figure 1 5 .  

3.6 Balanced Pressure Sauare Jet Problem 

This calculation was performed for a hot Mach 3 jet (TJ = 2000 OK) 

exhausting into a colder Mach 3 uniform external stream (TE = 500 OK) - the 
resultant jet velocity ratio, UJ/UE, was 2/1. The calculation was performed 
with a 21x21 square grid utilizing the 'uniform jet' startline procedure 
described in Section 3.1, to provide initial shear layer profiles. Of 

interest is the transition from square to circular type contours. The 
predicted outer jet boundary contours (d  = 0.01) shown in Figure 16 for 
several x stations [d represents an inert species, viz., d = 1 in the 
unmixed jet and equals 0 in the external streams; for Pr = 1, d also 
represents the nondimensional axial velocity distributions, i.e., d = 

(U-UE) / (UJ-UE) for constant pressure mixing1 clearly exhibit this 
transition. At x/r - 20, the boundary contour still has a distinct 
noncircular appearance while at x/r - 40, the contour starts to appear 

j 

j 
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circular. At x/r - 80, the outer contour is essentially circular as is the 
entire jet solution (Figure 17). 

j 

We note that at x/r - 20, the peak turbulence levels (Figure 18) occur 
j 

on the two symmetry planes and are well off axis, characteristic of shear 
layer-like behavior, while further downstream, peak levels are centered 
about the jet axis, The predicted variation of the turbulent kinetic 
energy, k, and the species parameter, d,  along the jet axis are exhibited in 
Figure 19 and are compared with SCIPVISl predictions for the 'corresponding' 
circular jet (the square jet was initially 2x2; the circular jet had an 
initial diameter of 2). The square jet is predicted to mix somewhat faster 
than the circular jet (which was also predicted using 21 grid points and the 
same turbulence model). If we perform the comparison for jets of equal mass 
flux on a scaled basis (viz., k, (d vs. x/nA), ,the circular jet would mix 
faster than the square jet. Figure 20 compares the predicted axial species 
decay along the jet centerline using the ke and kW turbulence models. The 
ke model is seen to predict substantially faster mixing in accord with past 

observations for axisymmetric jet problems (see ref. 1). Figure 21 depicts 

predicted species (1) and temperature (TI contours in the plane of symmetry 
(y = 0 or z = 0) obtained using the ke turbulence model. 

3.7 Underexpanded Square Jet Problem 

The same square jet problem described above was repeated with the jet 

The calculation was per- exhaust pressure boosted to 2 atm (P,/P, = 2/11. 
formed in both rectangular and cylindrical coordinates. 

3.7.1 Rectangular Coordinate Solution 

The rectangular coordinate calculation was performed with a 21 x 21 
rectangular grid initially spread evenly over the quarter plane domain 0 < y 
< 2 and 0 < z < 2. The calculation initiates with a Prandtl-Heyer fan 
propagating inward from the nozzle trailing edge lip to the axis, and with a 
plume induced bow shock propagating outward. Figure 22 exhibits pressure 

contours for this case on the symmetry planes (y = 0 or z = 0) with the 

extent of the shear layer (,1 < d < . 9 )  superimposed. The symmetry plane 
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plot closely resembles the analogous ZD/axisymmetric jet solution plot. 

However, contours in the cross-flow planes, x = constant, clearly exhibit 
the 3D characteristics of this flow. 

Figure 23 exhibits several pressure contours in the cross-flow planes 
at stations 0 < x < 10. The square startline solution (x - 0 )  just down- 
stream of the cowl lip depicts the inward expansion and outward compression 
process quite distinctly. The pattern at x = 2 shows the complex effects of 

the interaction of the initially planar/perpendicular wave fronts. On the 
symmetry planes y = z = 0, the pattern is 2D like but on the 4 5 O  plane (y = 

z), the 3D interactions of the waves are quite evident (e,g. the contour of 
minimum pressure centered about y = z - .75 results from the interaction of 
the two side expansions, etc). The wave fronts of the barrel shock can be 
distinguished at x = 6 and the pattern is highly three-dimensional. The 
reflected wave fronts are distinguishable at x = 8 and x = 10. 

Figure 24 depicts b contours at these same axial stations showing the 
evolution of the jet shear layer contour from square to rounded shapes. The 

initially square contours take on a somewhat irregular shape initially in 
response to the 3D convective cross-flow velocities generated by the 
pressure field. At x = 10, the contours again become smooth with rounding 
about the 4 5 0  plane, and downstream, will take on rounded shapes as in the 
balanced pressure case. The outer jet contours (d  = .1) for the first 

several radii are compared on a single plot in Figure 25 for both the near- 
field ( 0  < x < 10) solution and further downstream to x = 40. 

The SCIP3D predicted nearfield centerline pressure variation is 
compared with SCIPVIS predictions for 'corresponding' planar (2D) and 

circular (AX11 jets (Figure 2.6). The initial square jet pressure decay 
predicted by SCIP3D is bounded by the planar and circular SCIPVIS pre- 
dictions. The square jet recompression initiates downstream of the circular 

case and the pressure variation is more rapid with an overshoot occurring at 
x - 8 that is not evidenced in the circular or planar situations. 

i 
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3.7.2 Cylindrical Coordinate Solution 

I 

I 

In the rectangular coordinate solution, the boundaries zu(x) and yu(x) 
moved outward to encompass the viscous jet as per the discussion of Section 

2.5 and the Figure 3 schematic. In cylindrical coordinates, the outer 
boundary, ru(x,d),  adapts to the shape of the jet contour. Figure 27 
depicts the cylindrical grid at x = 0 and x = 10 employed for this problem 
(21 points in the r direction and 12 points in the d direction were 
utilized). Figure 28 exhibits pressure contours in the symmetry planes (d  = 

0 and 7V2) which should be compared with those of the rectangular solution 
(Figure 28) .  A comparison of predicted centerline pressures along the jet 
axis, and, predicted jet outer boundary variations in the symmetry plane are 
exhibited in Figure 29 for the Cartesian and cylindrical solutions. The jet 
boundary variations are seen to be essentially identical. The axis pressure 
variations are comparable for 0 < x < 8 but have some departures downstream, 
possibly due to the different grid resolution in the cross-flow direction 
which could affect the near-axis solution in the vicinity of shock re- 
flection . 

A comparison of 6 contours at x/r = 10 (Figure 30) for the Cartesian 
grid and cylindrical grid solutions shows that the mixing characteristics of 
the two solutions is essentially grid independent. Cross-flow velocity 
vectors for the cylindrical grid solution at x/r = 2, 4, 6, 8 and 10 are 
exhibited in Figures 31A, B, C, D, and E respectively, and clearly exhibit 
the wave effects. = 2 and 4 the plume is expanding and the cross- 
flow is small relative to the grid lines, d = constant. At x/r = 6, the 
flow is recompressing and a barrel shock is propagating towards the axis 
(see also, the pressure contours of Figure 23). The cross-flow is seen to 
be highly three-dimensional in the vicinity of the barrel shock. At x = 8 
the barrel shock has reflected from the axis, and, at x = 10, the reflected 

shock has propagated back into the flow turning it parallel to the axis. 

j 

j 

At x/r 
j 

J 

3.8 Balanced Pressure 4/1 Aspect Ratio Reotangular Jet Problem 

This quarter plane symmetry calculation was performed for an exhaust 

emanating from a rectangular nozzle ( 0  < y < 2; 0 < z < 1/21 with the 
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initial 21x21 grid encompassing the domain 0 < y < 2.5 and 0 < z < 1. The 

computational boundaries yu(x) and zu(x) adapted to the growth of the jet as 
described in Section 2.5. The calculation was run out to x = 120 using the 
ks turbulence model. The exhaust and external flow conditions were the same 
as for the previous balanced-pressure square jet case, namely MJ = 3, TJ = 

2000 O K  and = 3, TE = 500 OK. 

The nearfield structure of the rectangular jet flow is exhibited by the 
contours of the velocity, U; the species parameter, d; the temperature, T; 
and, the turbulent kinetic energy, k; in the symmetry planes y = 0 and z = 0 

as exhibited in Figure 32-35. Cross-flow contours of d at x = 5 ,  10, 20 and 
40 (Figure 36) show the nearfield shape change from a rectangular to an 
elliptical cross-section. Cross-flow contours of k at = 10, 20 and 30 

(Figure 37)  show peak values of turbulence to be off-axis and initially 
dominated by the stronger mixing in the vertical ( z )  direction. 

The overall jet structure (nearfield/farfield) is exhibited in the d 
symmetry plane contours of Figure 38 for 0 < x < 120, and, the d cross-flow 
contours at x = 60, 80 and 100 (Figure 39). The centerline variations of d, 
T, and k for 0 < x < 120 are exhibited in Figures 40 - 42. 

3.9 Underexpanded 4/1 A s p e c t  Ratio Rectangular Jet Problem 

The above problem was repeated with the jet pressure boosted to 2 atm, 
and all other conditions remaining the same. The pressure contours in the 
two symmetry p l a n e s  (y  = 0 and z = 0 )  are exhibited i n  Figure 43 with the 

shear layer (.1 ( d < -0) superimposed. Jet contours (d  = -1) at x = 0, 10, 
20 and 40 (Figure 44) exhibit a gradual transition towards an elliptical 
cross section, with the 'effective' aspect ratio at'x = 40 (yMAx/%Ax) 
reduced from 4/1 to 2.3/1. The bulges due to wave/shear layer interactions 
are quite pronounced at x = 10 and 20. Note that the d contours at x = 10 

and 20 nearly coincide since the jet has fully expanded at x = 10 and then 
recompresses in going from 10 to 20. The predicted pressure variation along 
the jet axis of symmetry is exhibited in Figure 45. 
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FIGURE 45. Pressure Variation Along Jet Axis; Underexpanded Rectangular 
Jet. 
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3-10 Hultiple Underexpanded Square Jet Problem 

A ca lcu la t ion  analogous t o  t ha t  of t h e  underexpanded square j e t  problem 

(Sect ion 3.7) w a s  performed f o r  an i n f i n i t e  a r r a y  of  square underexpanded 
jets as exhib i ted  i n  Figure 46. The jets are i n i t i a l l y  2x2 and t h e i r  axes 
of symmetry have a spacing of 4. The lower po r t ion  of Figure 46 e x h i b i t s  a 
schematic of t h e  predicted shear  l a y e r  growth and shock p a t t e r n  f o r  0 < x < 
40 i n  the  symmetry plane z = 0. The c a l c u l a t i o n  was performed u t i l i z i n g  

I 

I 

I symmetry condi t ions on t h e  planes z = 0, y = 0 and y = 2. The p red ic t ed  

p res su re  contours and d contours i n  t h e  plane z = 0 are exh ib i t ed  i n  F igu re  

47. The flow is charac te r ized  by jet-induced bow shocks t r ave r s ing  the  flow 

i n  t h e  spanwise d i r e c t i o n  as r e a d i l y  evidenced by t h e  pressure  contours  of  

F igure  47. The spec ie s  contours expand/contract  i n  accordance wi th  t he  

passage of  thg shock waves. The ind iv idua l  mixing reg ions  co inc ide  a t  x - 
35 as indica ted  by t h e  coalescence of t h e  ou te r  d contours.  b contours  a t  
t h e  axial s t a t i o n s  x = 0, 10, ..., 60 (Figure 48) e x h i b i t  t h e  growth h i s -  
t o r y  o f  t h e  ind iv idua l  jets and the i r  i n t e r a c t i o n  f o r  x > 35,  w i t h  pronoun- 

~ 

I 

I 

I ced wave i n t e r a c t i o n s  producing t h e  corner  reg ion  bulges i n  t h e  e a r l y  growth 

stage (0 < x < 20).  The mixing c h a r a c t e r i s t i c s  i n  t h e  symmetry p lanes  z = 0 

(TOP VIEW) and y = 0 (SIDE VIEW) are exhib i ted  by t h e  v e l o c i t y  and t u r b u l e n t  

k i n e t i c  energy p r o f i l e s  a t  x = 0, 10, ..., 60 provided i n  F igure  49. 
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FIGURE 46. Schematic Of Multiple Square Jet Problem And Shock/Shear 
Layer Pattern In z = 0 Symmetry Plane. 
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FIGURE 47. 6 and P Contours In z = 0 Symmetry Plane For Multiple Square 
Jet  Problem. 
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4. loIRIERICdL PROCEDURES FOR AHALYZIMG SUBSONIC H H I U G  
PROBLrOIS A l D  "ERICAX. STUDIES 

4.1 Overview of Pressure-Split PBS Subsonic Harching Approach 

One of the most popular procedures for the analysis of 3D subsonic 

mixing problems has been the SIMPLE procedure of Patankar and Spalding". 

Numerous codes have been developed based on this procedure for both free and 

ducted jet mixing problems. In the SIMPLE procedure, the flow solution is 

obtained by a stepwise parabolic marching integration combined with a 

quasi-elliptic cross-flow integration. To permit spatial marching, the 
pressure field is split with the streamwise component imposed (or arrived at 
from global continuity constraints for ducted flows) and the cross-flow 

variation arrived at from the coupled solution of the continuity and 

cross-flow momentum equations. 

The SIMPLE procedure utilizes an iterative cross-flow integration 

approach whereby: 

(1) the cross-flow momentum equations are independently solved to 
yield the cross-flow velocities, V and W; and, 

(2) a pressure correction equation arrived at from continuity with 
'partial' cross-flow momentum coupling is used to upgrade the 
pressure field. 

Steps (1) and ( 2 )  are iterated upon until a converged cross-flow solution is 

obtained. This iterative cross-flow procedure is not always stable and 

according to Carroll", 'most of the instabilities are caused by the coupl- 
ing between the equations'. To reduced these instabilities, significant 

underrelaxation is required between the iterative sweeps. In addition, in 
complex regions such as the initial corner regions of rectangular jets, 

convergence problems occur which sometimes cannot be remedied by under- 

relaxation. 

In analyzing 2D subsonic mixing layers, a very different 'philosophy ' I 
I 

1 

I of approach is often taken for unbounded problems, which more closely follows 

standard boundary layer precepts. Thus, in the 2D boundary layer cross-flow 
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integration procedure of Bradshaw and coworker~40,~~ the cross-flow (normal) 
velocity is obtained from the continuity equation while the cross-flow 

pressure variation is arrived at from the normal momentum equation. Here, 
the roles of the cross-flow equations are reversed. This approach has 
better convergence characteristics than the SIMPLE procedure, and, if the 
pressure variation is negligible, reduces to a standard boundary layer 
solution requiring no iterations. 

Recently, Dash and Sinha' have reformulated the 2D cross-flow equations 

to obtain an independent equation for the cross-flow velocity which requires 
no assumptions about the cross-flow pressure or density variations. This 
provides a noniterative solution to the cross-flow equations for unbounded 
flows in situations with large cross-flow variations, and thus, improves 
upon the iterative procedure of Bradshaw and coworkers. An extension of 
this noniterative cross-flow procedure to 30 free jet flows is discussed in 
this report. The numerical framework for the parabolic (streamwise) portion 
of the jet mixing solution parallels that of SCIP3D as will be summarized 

below. 

- 

In the new cross-flow approach formulated: 

continuity-based equations for the cross-flow velocity components, 
V and W, are arrived at via combining the continuity and cross 
flow momentum equations, and, differential equation-of-state 
relations, subjected to fixed values of parabolic variables, U 
(streamwise velocity) and B (total enthalpy) arrived at apriori; 

- 
the V (or W) equation is coupled to the W (or V) and P dependent 
variables - only through vertical ( z  direction) derivative terms - 
thus in the absence of local cross-flow, no coupling occurs and V 
(or W) can be solved independently as inthe 2D approach of Dash 
and Sinha; 

recognizing that V and W must be closely coupled in vortical 
(e.g., corner) regions, the V and W equations are solved 
concurrently in a coupled fashion with the cross-flow pressure 
field lagged; 

the cross-flow pressure field is updated using a cross-flow 
momentum equation - if the pressure changes are negligible, the 
solution is converged and no iterations are required; if the 
pressure changes are substantial, Step (3) is repeated using the 
updated pressure field; and, 
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( 5 )  the direction of the cross-flow integration sweeps are alternated 
at subsequent steps to eliminate biasing of the difference 
relations. 

The present coupled, explicit cross-flow solution procedure is restricted to 
free (unbounded) jet flowfields with quarter plane symmetry. For other 
subsonic jet mixing problems with different types of boundary conditions, 
the cross-flow solution procedure requires modification. 

4.2 Parabolic Marching Procedure 

The 'parabolic portion' of the pressure-split PNS marching integration 
is performed using a variant of the SCIP3D integration procedure with the 
following modifications: 

(1) the streamwise (axial) momentum equation is solved with a = 0 so 
that % = pU2 (rather than P+pU2) and the pressure gradient, aP/ax, 
is treated as a prescribed forcing function (see eq. 1); 

(2) an upwind variant of the MacCormack predictor/corrector algorithm 
is employed (see ref. 1); 

( 3 )  the wave portion of the jet growth rule given by eq. (19) is 
eliminated (i.e., d%/dx = %(af/az)mAX/fx); 

(4 )  a simple subsonic decode procedure is utilized to obtain the non- 
conservation variables from the conservation array after both 
the predictor and corrector steps, viz.: 

f = Ef/pU 

where : 

Ef = pUf 

and ; 

( 5 )  the pressure field is approximated by: 

which is solved in an explicit predictor/corrector fashion using 
central differences, with ap/ax specified. 

At the completion of the predictor/corrector 'parabolic integration', 

'firm' values of the variables U, H and d are obtained, and 'approximate' 
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I 

va lues  of  t h e  va r i ab le s  V, W and P are a v a i l a b l e  which do - not s a t i s f y  t h e  
con t inu i ty  equation. The values  of V, W and P are then  r ev i sed  t o  s a t i s f y  

t h e  coupled con t inu i ty  and cross-flow (V,W) momentum equat ions  w i t h  U,  H and 
& - f ixed ,  and, w i t h  t h e  approximate va lues  of V, W and P used i n  eva lua t ing  

c o e f f i c i e n t s  for t h e  cross-flow i n t e g r a t i o n  t o  be discussed below. No 
i t e r a t i o n s  between t h e  parabol ic  and cross-flow sweeps are performed; 

rather, t h e  axial  s t e p  s ize  is reduced i n  reg ions  with large g r a d i e n t s  (such 
as the  i n i t i a l  j e t  mixing region) t o  minimize e r r o r s  incur red  by t h i s  

approximation. 

4-3 Cross-Flou Eauations 

Expanding the mapped form of t h e  con t inu i ty  equat ion y i e l d s  t h e  form 
l i s t e d  below (eq. 3 7 ) .  

( 3 7 )  an aU = P [ - - + a  an - + a  - 1  
U a t  Y a? a c  

a and aZ are mapping t ransformat ion  terms and the  I n  eq. (371 ,  by, b,, 

d e r i v a t i v e s  of t h e  streamwise (axial) ve loc i ty ,  U U .and U are known from 

t h e  pa rabo l i c  i n t e g r a t i o n  performed aprior i .  The d e n s i t y  d e r i v a t i v e s  i n  t h e  
c o n t i n u i t y  equat ion are replaced by de r iva t ives  of p re s su re  and cross-flow 
v e l o c i t i e s ,  as w e l l  as known de r iva t ives  of  streamwise v e l o c i t y  and t o t a l  
enthalpy. T h i s  is accomplished by d i f f e r e n t i a t i n g  the  p e r f e c t  gas s ta te  

r e l a t i o n  (eq.  38)  which y i e l d s  t h e  dens i ty  d e r i v a t i v e  pa given by eq. ( 3 9 )  

where a r e p r e s e n t s  t h e  f, q or 5 d i rec t ions .  

Y 

t' tl c 

which y i e l d s  : 

= I- P + E- (y-1) [UU + VV + WWa - H I 'a a2 a a i  a a a 

(38)  

( 3 9 )  
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An important consideration concerns the treatment of the pressure 

Here, equation (36 )  is utilized which brings in the gradient term, P 

pressure-split approximation. Substituting the pa expression into equation 

( 3 7 )  with P given by equation ( 3 6 )  yields the Modified Continuity Equation 
given by equation 40. 

< *  

t 

Modified Continuitv Eauation 

V W 
+ (b -)P + (b -)P = Bp 

YB tl ZB c 
I 

where : 

I I 

The cross-flow momentum equations in the y and z coordinate directions 
in transformed E, q and t coordinates are listed below: 

vV v + v v  + i V  + - P  = -  5 tl k PU tl PU 
(42)  

w +i?w + i W t + - P  bz = -  vW 
5 tl PU t PU 

(43 1 
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..) 

where Vv and Vw are t h e  parabol ized stress terms, and y, 8. 5 and 
def ined by: 

are 

V T =  [by - a 1 
Y 

The Modified Cont inui ty  Equation (eq. 40) and these two momentum 
equat ions  comprise three equat ions f o r  t h e  cross-flow v a r i a t i o n  of  three 

v a r i a b l e s ,  V, W and P, w i t h  t h e  parabol ic  v a r i a b l e s  U and H known a p r i o r i .  
By manipulat ions analogous t o  those of  r e fe rence  8, continuity-based 
equat ions  f o r  V and W can be obtained which would be independent of  a l l  

other parameters i n  t h e  absence of  cross-flow. The procedure for obta in ing  
t h e  'W equa t ion '  is descr ibed  below. 

t S t a r t i n g  w i t h  t h e  Modified Continui ty  Equation, we replace t h e  terms V 

c and P w i t h  their  equiva len ts  obtained from the  V (eq. 42) and W (eq. 43) 
momentum equat ions ,  r e spec t ive ly .  The V term is given by: t 

The P term is given by: 
4 

%I 

(b -)P W =(F[--w "W - K  - %  J 
Z B  tr PU e rl t 

(45) 

S u b s t i t u t i n g  the  expressions given by eqs. (44) and (45) i n t o  t h e  Modified 
Cont inui ty  Equation, and grouping l i k e  terms, y i e l d s  t h e  expression:  
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Following the analogous s t e p s ,  t h e  'V equat ion '  l i s t e d  below is obtained.  

4.4 Cross-Flow Integration Procedure 

Refer r ing  t o  F igure  3, t h e  cross-flow plane,  = constant ,  is sub- 

divided i n t o  IMAX-1 equa l ly  spaced i n t e r v a l s ,  Aq, where q = (I-l)/(IMAX-l), 

and, JMAX-1 equa l ly  spaced i n t e r v a l s ,  At, where 5 = (J-l)/(JMAX-l). For 

q u a r t e r  p lane  symmetry, t h e  boundary condi t ions  are as fol lows:  

I 
W - 0  on 5 = 0 (J=1) 

V = 0 on q = 0 (I=1) 

4 = 1 (J=iTMAx) 

q = 1 (I=IMAX) 
P = PE on 

1 

Equations (40) and (41) are solved i n  t h e  fol lowing manner on t he  p lane  t = 

cons tan t  : 

(1) t h e  t u r b u l e n t  stress terms V and Vw are treated as fo rc ing  V func t ions  terms; 

(2)  t h e  p re s su re  g rad ien t  terms P and P are 1app;ed; 

( 3 )  t h e  W equat ion  (40) is in t eg ra t ed  sweeping upward from = 0 t o  1 
II 5 

(i.e., from J = 1 t o  JMAX); 

( 4 )  t h e  V equat ion (41) is in t eg ra t ed  sweeping spanwise from q = 0 t o  
1 (i.e., from I = 1 t o  IMAX); 

(5) t h e  W and V equat ions are solved concurren t ly  i n  a coupled manner 
which e n t a i l s  ei ther:  

C-r 
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(a) sweeping upward from J to J + 1 with a nested spanwise sweep 
from I = 1 to IMAX; or, 

(b) sweeping spanwise from I to I + 1 with a nested upward sweep 
from J = 1 to JMAX. 

(6) after the coupled W and V solutions are obtained, the cross-flow 
pressure field is upgraded: 

(a) sweeping downward from f = 1 to 0 (i.e., from J = JMAX to J = 
1) using the W normal momentum equation if an upward (a type) 
sweep was used in Step ( 5 ) ;  or, 

(b) sweeping spanwise from q = 1 to 0 (i.e., from I = IMAX to (I 
= 1) using the V normal momentum equation if a spanwise (b 
type) sweep was used in Step ( 5 ) .  

Referring to Figure 50, the V and W equations are solved using the 
triangular-type difference elements exhibited. The W equation is integrated 
upward in the f direction from known values of W (= 0 )  on the plane of 
symmetry, 4 = 0. The V equation is integrated spanwise in the q direction 
from known values of V (= 0 )  on the plane of symmetry, q = 0. The upward/ 
spanwise integrations in the q/q directions are performed using a two point 
(trapezoidal) procedure (as in the 2D cross-flow analysis of reference 8) .  

The other family of derivatives (q for W equation, c for V equation) are 
evaluated using central differences. 

4.5 Pressure-Split PES Subsonic Square Jet Calculation 

This square jet calculation (Mach .5 into quiescent stream) w a s  

performed for a nozzle having the exit plane boundaries y = 21 and z = 21. 

The calculations were performed utilizing quarter plane symmetry with the 
initial grid extending to y = 2 and z = 2 yielding a substantial buffer 
region of uniform exhaust flow about the jet. Figure 51 depicts predicted d 
contours at x = 20 obtained utilizing both the ke and kW turbulence models 
with the full pressure-split methodology. The faster mixing predicted by 
the ks model coincides with past experience for low speed axisymmetric jets. 
The pressure split solutions yield jet contours which have distinct kinks in 
the outer mixing region. This is to be contrasted with the smooth contours 

obtained by suppressing the effects of convective velocities on the solution 
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Cross-Flow Solution. 
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(i.e.,  by en fo rc ing  both V and W = 0 and t h u s  gene ra t ing  a ' d i f f u s i o n  o n l y '  
t y p e  s o l u t i o n ) .  

The k inks  i n  t h e  6 contours  appear  t o  be a s s o c i a t e d  w i t h  t h e  ' a b r u p t '  

breakdown o f  t h e  i n i t i a l  v o r t e x  sheet sur rounding  the  j e t  w i t h  t h e  subse-  
quent  format ion  of a p a i r  of  coun te r - ro t a t ing  streamwise v o r t i c e s  
symmetrically spaced about  t h e  corner  r eg ion ,  as schematized i n  F i g u r e  5 1 " .  

A v e c t o r  p l o t  of  t h e  c r o s s  f low v e l o c i t y  f i e l d  corresponding t o  t h e  PNS/kW 

s o l u t i o n  a t  x = 20 is  g iven  i n  F igu re  52. We no te  t h a t  t he  j e t  en t ra inment  

v e l o c i t i e s  on t h e  symmetry p l anes  are i n  accord w i t h  va lues  f o r  p l a n a r  j e t  

mixing s o l u t i o n s .  The ' f l a t t e n i n g '  of  t h e  o u t e r  d p r o f i l e s  a long  t h e  4 5 O  

p l a n e  ( y  = z )  is a t t r i b u t e d  t o  t h e  s i g n i f i c a n t l y  enhanced en t ra inment  
produced by t h e  3D corner  mixing. The ' k inks '  i n  t h e  o u t e r  d p r o f i l e s  

correspond t o  t h e  p o s i t i o n s  where t h e  streamwise v o r t i c e s  'pump f l u i d  o u t '  

o f  t h e  j e t .  

The subsequent  development o f  t h e  j e t  ou t  t o  x = 100 (PNS/kW s o l u t i o n )  

i s  exh ib i t ed  by t h e  d = 0.1 contours  a t  x = 40 ( i n n e r  contour  is  d = 0.9) 

60, 80 and 100 superimposed on t h e  cross-flow v e l o c i t y  v e c t o r  f i e l d  (F igu re  

5 3 ) .  The corner-induced streamwise v o r t e x  p a t t e r n  p e r s i s t s  i n  t h e  c ross -  

f low p lane  d e s p i t e  t h e  n e a r l y  c i r c u l a r  behavior  o f  t h e  streamwise p a r a b o l i c  
s o l u t i o n .  The v a r i a t i o n  of  rl and t u r b u l e n t  k i n e t i c  energy, k, a long  t h e  j e t  

c e n t e r l i n e  are e x h i b i t e d  i n  F igu re  54, and, are compared w i t h  'correspond- 
i n g '  p l a n a r  and axisymmetric j e t  s o l u t i o n s  (v i z . ,  s o l u t i o n s  having nozz le  
e x i t  heightddiameters  of  2)  p r e d i c t e d  u s i n g  t h e  SPLITP j e t  mixing model. 

4.6 Pressure-Split PNS 4/1 Aspect Ratio 

A 4/1 a s p e c t  r a t i o  j e t  was analyzed having cond i t ions  i d e n t i c a l  t o  

t h o s e  o f  t h e  squa re  j e t  case. The nozz le  ex i t  extended t o  y = - +2 and z = 

- M . 5 ,  whi le  t h e  i n i t i a l  g r id ,  employing q u a r t e r  p lane  symmetry, extended t o  

y = 2.5 and z = 1 (i .e. ,  a uniform b u f f e r  o f  freestream flow of  wid th  - 0.5  

The numerical  approach may a l s o  have some i n f l u e n c e  on t h e  v o r t i c a l  I 
behavior  p r e d i c t e d ,  e.g., t h e  s p a t i a l  marching procedure p rov ides  no 
mechanism f o r  streamwise p r e s s u r e  g r a d i e n t s  and /o r  upstream i n f l u e n c e  
effects  t o  be accounted f o r ,  which might i n f l u e n c e  t h e  r e s u l t s .  
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surrounded the jet initially). Figure 55  depicts predicted jet contours at 
x = 20 using the kW turbulence model with the pressure split, PNS approach, 

and, with the 'diffusive limit' approach whereby the convective velocities 
are suppressed (V = W = 0 ) .  As in the square jet case, the PNS b contours 
exhibit pronounced kinks associated with the corner generated streamwise 
vortices depicted in Figure 5 5 ,  while the case with convective velocities 
suppressed yields smooth, kink-free contours. 

The development of the jet out to x = 100 is exhibited by the 6 = 0.1 

contours in the cross-flow plane at x = 40 (inner contour is b = 0 . 9 )  6 0 ,  80 

and 100 (Figure 56) with a schematic of the streamwise vortex pattern 
superimposed. By x = 100, the jet contour takes on an elliptic appearance 
with the vortex-induced kinks no longer evident. The b contours in the y = 

~ 0 and z = 0 symmetry planes out to x = 300 are depicted in Figure 57, 

indicating that by x = 300, the flow is nearly circular. Profiles of b and 
~ 

I turbulent kinetic energy, k, in the two symmetry planes at x = 100, 200 and 
300 are exhibited in Figure 5 8 .  The variation of axial velocity, U, and 
turbulent kinetic energy, k, along the jet axis of symmetry are depicted in 

I Figure 5 9 .  

4.7 Parabolic Marchina ADDroach (P = P(x)  O n l y )  

An alternate procedure for analyzing subsonic jet mixing problems 

involves the solution of a reduced set of parabolic 'boundary layer 
equations'. In this approach, the cross-flow grid must be aligned so that 
one coordinate direction is essentially normal to the jet boundary. This 
can be accomplished using the hybrid adaptive rectangular/cylindrical grid 
discussed previous (see Figure 4 ) .  Utilizing this adaptive grid, the z 
(Cartesian) and r (cylindrical) directions align themselves normal to the 
jet boundary. Thus, W represents the velocity in the normal (entrainment) 
direction and V represents the cross-flow velocity. The equations solved 
neglect pressure variations in the cross-flow plane (P = P(x) only). The 
solution procedure employs a single parabolic solution sweep whereby the V 
component of velocity is determined from the V-momentum equation while the W 
component of velocity is determined from the continuity equation 
aposteriori. The W-momentum equation is neglected consistent with the 
approximation of constant pressure in the cross-flow plane. 
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4.8 Parabolic Rectangular J e t  A n a l y s i s  i n  Adaptive Cylindrical Coordinates 

The calculation described here utilized an adaptive cylindrical grid to 
analyze a 2 / 1  Aspect Ratio rectangular jet (MJ = 1, TJ = 800 OK) exhausting 
into a Mach .3 external stream (TE = 278 OK). The cylindrical grid employed 
2 1  points in the radial direction and 11 6 planes (0  < 6 < n / 2 ) .  The cal- 
culation was performed using the simplified parabolic boundary layer run 
option described above. Figures 60 and 6 1  exhibit predicted 6 and T 
contours in the y = 0 and z = 0 symmetry planes. Figures 62 and 63 exhibit 
predicted 6 and T cross-flow contours at x = 5 ,  10, 20 and 30. d and T 
cross-flow contours at x = 50 (Figure 64) show a nearly circular behavior. 

4.9 Comparison of Parabolic and Supersonic PRS Predictions for 3/1 Aspect 

Ratio Rectangular Jet  U s i n g  Hybrid Adaptive Grid 

This calculation was performed for a hot Mach 3 exhaust stream (TJ = 

2000 O K )  exhausting into a colder Mach 3 external stream (TE = 500 O K )  to 
compare the simplified parabolic run option with a full supersonic PNS 
calculation. The calculations were performed using the rectangular/ 

cylindrical hybrid adaptive grid with a moving origin. Figure 65 compares 
cross-flow 6 contours for the two solutions at x = 20. Both exhibit the 
same 'kinked' behavior in the corner region. Figure 66 depicts the cross- 
flow velocity vector field at x = 20 for the parabolic solution - note that 
the cylindrical origin (here at y = 1) moves inward to maintain the same 
dimensions on the d = 0 and 6 = n/2  planes. Figure 67 exhibits the 
evolution of the jet boundary contours from rectangular to circular. 
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5. mRIERICAL PROCEDURE FOR ANALYZIMG SUPRRSOloIC JETS EXHAUSTRIG 
m o  SWsOloIC EXTERNAL s!cREIIlIs AED "IWICAL STUDIES 

5.1 Review of 2D lrnerics for Supersonic/Subsonic Jet Mixing Problem 

The spatial marching PNS analysis of a supersonic jet exhausting into a 
subsonic external stream requires: 

switching the numerical algorithm from full PNS at supersonic jet 
grid points to parabolic or pressure-split PNS at subsonic jet 
grid points; 

matching the supersonic and subsonic PNS solutions at the jet 
sonic line; and, 

providing for a global pressure iterative methodology to account 
for the overall interaction of the jet and subsonic external flow. 

At the 2D level, the above procedures have all been made operational. The 
analysis of the mixed supersonic/subsonic problem in the absence of global 
external flow interactions (e.g., the external pressure field is assumed to 
be constant) has been performed with the SCIPVIS modell, and, numerous 
comparisons with the data of Seiner have been performed which demonstrate 
the viability of this approach (see refs. 2-51. A typical solution is 
exhibited in Figure 68 (from ref. 1) which shows the ability of SCIPVIS to 
accurately predict the complex jet pressure field. A key feature of S C I P V I S  

was the characteristic-based methodology developed to couple the supersonic 
and subsonic solutions at the jet sonic line as schematized in Figure 69. 
The coupling (at the grid point 1.1 is performed with the outer jet boundary 

pressure, Pe(x), prescribed and a viscous-characteristic constraint just 
under the jet sonic line (along X+) relating the supersonic pressure and 
flow angle. In SCIPVIS, the normal pressure variation across the subsonic 

outer layer is neglected and P (x)  is imposed at the sonic line yielding the 
flow angle there. Then, the variation in flow angle across the jet is 
obtained from the continuity equation yielding the entrainment (suction) 
velocity, Ve(x), at the jet outer edge. 

e 
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5.2 Bonadaptive Rectangular Uatchlng Boundary Approach 

For 3D jets, the coupling problem is complicated by the shape taken by 
the sonic line in the cross-flow plane, as well as by initial corner region 
vortical effects. In our initial work, mapped rectangular coordinates were 
employed and sonic line coupling was performed along the 'largest' embedded 
rectangle that could fit within the sonic line in the cross-flow plane (Fig. 
70). The pressure along the matching boundary was lagged yielding V and W 
at all I* and J* matching points which served as inner boundary conditions 
for the subsonic coupled V-W cross-flow solution. The subsonic cross-flow 
solution was swept outward from the matching boundary to the outer boundary, 
with y and z sweeps independent of each other until the I*, J* matching 
point. The nested subsonic corner region (I > I*, J > J*) was treated using 
specialized coupled logic. 

This approach was applied to the analysis of an underexpanded square 
jet exhausting into a subsonic stream. Reasonable results were obtained for 
the initial jet expansion (since the square grid coincided with the initial 
sonic line shape), but became quite poor when the reflected waves (which 
recompress the jet turning the stream surfaces inward) reached the now 
quasi-circular sonic line. The square representation of the sonic line 
artificially delayed the recompression waves from interacting with the 
corner region sonic line as shown in the sequence of cross-flow contours 
displayed in Figure 71. As exhibited, the initial expansion of the jet is 
well-predicted, but the recompression process (x > 4) leads to highly 
unrealistic cross-flow contours. 

-112- 



2 = o  

I,J*+ I 
I, J* 

FIGURE 70, 

J"  

M > I  I* ' 
k 

Line 

Y Matching Boundary 

a 

* b  
-y=o 
- 

I*;J I*+l , J 

Rectangular Matching Boundary For Mixed Supersonic/Subsonic 
Problem. 

-113- 



CROSS VELOCITY VECTORS CONTOURS 

I 1 I , I , I I , ;;: I , I I I I 
x x x x  x 
x x x x  1 

0 
0.0 0.5 1.0 1.5 2.0 

0 

; ; x 

x x x ~ ~ x x x  f T X X  

S X X X  x x x x :::xxxxx X 

t x x x x  x 
I 'xx: x 

i 
F x x x x x  

x x x x x  
x x x x  x 

0.5 1.0 1.5 2.0 
2 O;O 1 

x x x x  x 
I x x x  x 
x x x x  x 
x x x x  x j; I I I I I I LE;;, I I I 1 

0 

0.0 0.5 1.0 1.5 2.0 

2 

2 
1 
t! 
j 

I 
X / R J  = 1.0 

X/RJ = 2.0 

X / R J  = 3.0 

FIGURE 71. Species  (6) Contours And Cross-Flow Velocity Vectors For  
Underexpanded Square J e t  Into Subsonic External Stream U s i n g  
Version I Supersonic/Subsonic Coupling (Embedded Rectangle). 

-114- 



CROSS V E L O C I T Y  VECTORS d C O N T W R S  

x x x x  x 
1 1 X X I  t x x x x x  

0.0 0.5 1.0 1.5 2.0 
2 ,  1 

X/RJ = 5.0 

x x x 1  x 
x x x x  x 

x x x x  x 
I x x x  x 

0 

0.0 0.5 1.0 1.5 2.0 

. . . .  

. . . .  
, - . .  . . . .  
_ _ . I  

_ - e .  

. . . .  

. - . .  

. . . .  

X/RJ = 6.0 

1 
x x x x f  c x x x x x  

I x x x x  x I 

0.5 1.0 1.5 2.0 0.0 
Y I R  j 

0.0 0.5 1.0 1.s 2.0 
YIRj 

FIGURE 71 - COIUT'D. Species (6) Contours And Cross-Flow Velocity Vectors 
For Underexpanded Square Jet Into Subsonic External 
Stream U s i n g  Version I SupersonidSubsonic Coupling 
(Embedded Rectangle). 

-115- 



5.3 Variable Rectangular Grid Hatching Boundary Approach 

To remedy this problem, a variable matching boundary which adapted 
itself to the sonic line cross-flow variation was implemented, still working 
in mapped rectangular coordinates (Figure 72). Using this approach, the 
matching logic at the sonic line is quite complex, and the solution of the 
coupled V-W subsonic cross-flow equations entails very cumbersome logic. 
Results using this adaptive approach are exhibited in Figure 73. The solu- 
tion in the corner region ultimately goes unstable due to complexities in 
concurrently handling the initial subsonic corner-induced vortices and the 

reflected compression wave system. 

5.4 Fully Adaptive Hatching Boundary Approach 

The current approach for dealing with this complex problem involves 
utilizing adaptive coordinates with the cross-flow directions aligned: 

(1) along the jet entrainment (inflow/outflow) direction, essentially 
normal to the sonic line; and, 

(2) normal to this direction and thus aligned with the sonic line and 
also normal to the plane/axis of symmetry. 

In this approach, a parabolic procedure is employed for analyzing the 
subsonic region of the flow which neglects the momentum equation in the 
entrainment aligned direction. Results for an 8/1 velocity ratio balanced 

pressure square jet problem (MJ = 2, Tg = 2000 OR; ME = 0.5, TE = 500 OK) 

performed with adaptive cylindrical coordinates are exhibited in the next 
several figures. The calculations were performed using a fully parabolic 
approach and the adaptive supersonic/subsonic PNS approach discussed here. 
Parabolic vs. PNS solution contours of b and T in the jet symmetry plane are 
exhibited in Figures 74 and 75, respectively. Cross-flow contours of b and 
T at x = 25 are compared in Figures 76 and 77. The 'crude' computational 

grid employed to perform this calculation is exhibited at x = 25 in Figure 
78. Pressure contours at x = 25 are exhibited in Figure 79. Note the close 

similarity in b contours showing that mixing processes are nearly identical, 
but, variations in T contours indicating the influence of the variable 
pressure field in the PNS case. 
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t 

Preliminary results for an underexpanded subsonic/supersonic square jet 
problem with conditions comparable to those of the Seiner casei--' (see Fig. 

68) are exhibited in Figures 80 and 81. Figure 80 exhibits d and P contours 
at x = 4. The predicted variation of pressure along the jet axis for the 
first shock cell is exhibited in Figure 81. To check out the code's 
performance, an attempt was made to analyze the above problem in the 
axisymmetric limit and compare it directly with SCIPVIS results. The 3D 
code utilized the same grid as SCIPVIS in each cross-flow plane, d = 

constant. The 3D calculation was performed utilizing quarter plane symmetry 
employing five d planes. Figure 82 compares SCIP3D predicted shear layer 

boundary contours (d  = 0.05 and 0.95) in the symmetry planes with corre- 
sponding SCIPVIS results. Figure 83 compares predicted centerline pressure 
variations. The comparisons indicate that further work is required to deal 

with near-axis effects in the 3D code to get the two solutions to agree more 
closely. 
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FIGURE 83. Comparison Of SCIP3D And SCIPVIS Predictions Of Jet Center- 
line Pressure Variations For Underexpanded Axisymmetric 
Subsonic/Supersonic Jet Problem. 
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6. SlJIQURY 

The SCIP3D 3D PNS jet mixing model and 
rectangular jet mixing problems have been 

its application to a variety of 
described in this report. For 

fully supersonic free jet problems (supersonic jet into supersonic external 
stream), the model has been demonstrated to predict plume flowfields for 
mildly underexpanded cases, and can be used to support plume related 
engineering studies at a research code level. The SCIP3D model also has 
current applicability to supersonic ducted problems (e.g., 3D nozzles/ 
diffusers and ducted jet mixing problems) but lacks the ability to resolve 

the near-wall boundary layer due to the explicit numerics’utilized. 

An extended version of SCIP3D (entitled SCHNOZ3D) has been developed 
for applications to scramjet propulsion problems. SCHNOZ3D contains 
generalized finite-rate chemistry capabilities and has been applied to 
scramjet combustor and nozzle/plume flowfields. Features and applications 
are to be reported in the Fourth National Aerospace Plan Tech Mat Symposium, 
Monterey, CA, February 1988 and the 17th JANNAF Plume Technology Symposium, 
NASA/LRC, Hampton, VA, April 1988. Exploratory work to extend this model to 
analyze the near-wall boundary layer is in progress utilizing a time- 
iterative procedure. 

With regard to the analysis of supersonic jets exhausting into a 
subsonic external stream, the current noniterative methodology requires 
gridding which adapts to the sonic line shape in the cross-flow plane. 
Successful runs have only been performed by invoking simplifying assumptions 
for the cross-flow pressure variation in subsonic regions (e.g., P = P(x) 
only). It appears that the noniterative methodology is quite cumbersome to 

deal with and that efforts should focus on time-iterative methodology on a 
plane to plane basis (e.g., in a spatial marching mode of operation with 
upstream influence effects suppressed). Other recommended upgrades to 
SCIP3D would include casting the equations in generalized coordinates and 

incorporating adaptive procedures to pack grid points into shear layer 1 

regions. Upgrading turbulence models from the two-equation level to the 
multi-scale or algebraic Reynolds stress level would also appear requisite 
to deal with vortical aspects of 3D mixing. This should be followed by a 

detailed validation study using the available rectangular jet mixing data 

base. 
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